Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Highlights from a member survey and panel discussion outlining the challenges and benefits of advanced manufacturing for the materials community. The article covers research being conducted in academia and industry to develop and integrate advanced manufacturing techniques; methods for in-process monitoring and machine learning; and challenges in adopting new digital manufacturing technologies.more » « less
-
Abstract This study binder jets a tungsten carbide‐nickel (WC‐Ni) sintered‐agglomerated composite powder, and postprocesses the preforms using an initial sintering step followed by a hot isostatic pressing (HIP) step. The effects of sintering temperatures, sintering durations, and HIP temperatures on notable properties (e.g., porosity, microstructure, hardness, and oxidation behavior) are quantified. The highest average relative density produced in this study was 96.8%, and volumetric shrinkage of these coupons was about 64%. Microstructural characterization shows that the WC grains are homogenously distributed throughout the nickel matrix and grow to an average diameter of 1.6 (a 60% increase) during processing. X‐ray diffraction patterns indicate that no unwanted products were formed. Processed coupons achieved a maximum hardness of 54 Rockwell C, limited by their internal porosity. Oxidation tests result in the production of WO3and NiWO4at temperatures above 600°C. Methodologies and results from this study can be leveraged to additively manufacture highly dense, geometrically complex WC‐Ni parts with small carbide grains, low nickel content, desirable microstructure, and suitable functional properties.more » « less
-
Abstract Although ceramic particle‐metal matrix materials (i.e., cermets) can offer superior performance, manufacturing these materials via conventional means is difficult compared to the manufacturing of metal alloys. This study leverages the laser powder bed fusion (LPBF) process to additively manufacture dense tungsten carbide (WC)‐17 wt.% nickel (Ni) composite specimens using novel spherical, sintered‐agglomerated composite powder. A range of processing parameters yielding high‐density specimens was discovered using a sequential series of experiments comprised of single bead, multi‐layer, and cylindrical builds. Cylinders with a relative density >99% were fabricated and characterized in terms of microstructure, chemical composition, and hardness. Scanning electron microscopy images show favorable wetting between the Ni binder and carbide particles without any phase segregation and laser processing increased the average carbide particle size. Energy dispersive X‐ray and X‐ray diffraction analyses detected traces of secondary products after laser processing. For samples processed at high energy densities, complex carbides and carbon agglomerate phases were detected. The maximum hardness of 60.38 Rockwell C is achieved in the printed samples. The successful builds in this study open the way for LPBF of dense WC‐Ni parts with a large workable laser power‐laser velocity processing window.more » « less
An official website of the United States government
